Coupled Collaborative Filtering for Context-aware Recommendation
نویسندگان
چکیده
Context-aware features have been widely recognized as important factors in recommender systems. However, as a major technique in recommender systems, traditional Collaborative Filtering (CF) does not provide a straightforward way of integrating the context-aware information into personal recommendation. We propose a Coupled Collaborative Filtering (CCF) model to measure the contextual information and use it to improve recommendations. In the proposed approach, coupled similarity computation is designed to be calculated by interitem, intra-context and inter-context interactions among item, user and context-ware factors. Experiments based on different types of CF models demonstrate the effectiveness of our design.
منابع مشابه
QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملContext-Aware Factorization for Personalized Student's Task Recommendation
Collaborative filtering one of the recommendation techniques has been applied for e-learning recently. This technique makes an assumption that each user rates for an item once. However, in educational environment, each student may perform a task (problem) several times. Thus, applying original collaborative filtering for student's task recommendation may produce unsatisfied results. We propose ...
متن کاملCollaborative Context-aware Preference Learning
Preference learning methods work by exploiting patterns in the data that relate users to items. Preference data often includes information such as the context of a recommendation (e.g. time/date, location). Leveraging this data (e.g. click logs, purchase/usage data) can significantly improve the relevance and quality of the recommendation. In this work we introduce a novel scalable context-awar...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015